Urszula	Kanturska
---------	-----------

Making decisions in hazardous transport networks

Michael G H Bell Imperial College London

Introduction

Imperial College London

Aim

• Reliable transport in uncertain networks

Approach

- Game theory: Demon(s) try to disrupt trips
 - Single demon: Low probability High consequence (LPHC)
 - Multiple demons: High probability Low Consequence (HPLC)

Questions

- Where will demon(s) strike? Critical links
- How to reduce the risk? Strategy

Solution

- LPHC: Olympic Route Network
- HPLC: Vehicle navigation

Presentation Outline

PART 1 Introduction to the approach

Imperial College

- Uncertainty and risk
- Game theory
- PART 2 Example: Olympic route network
 - Single demon game
 - Benefits from routing strategy
 - Benefits from defence strategy
- PART 3 Example: Vehicle navigation
 - Multiple demon game
 - Hyperstar algorithm
 - Time-dependent vehicle navigation

PART 1 Research background

Reliability - Vulnerability - Risk

- Security = acceptable level of risk
- Risk = potential loss

Risk = hazard/threat x vulnerability
EXTERNAL INTERNAL

Vulnerability = inability to avoid potential harm
Reliability = stability in the quality of service

Reliability

Vulnerability

Imperial College

Risk averseness and game theory

Imperial College London

How the game works? - Round 2

Imperial College

London

How the game works? - Round 3

ARUP

Imperial College

London

ARUP

Imperial College London

At the solution

Routes used

- Only routes attractive to the dispatcher are generated
- Routes with minimum expected cost
- Link use probabilities

 \rightarrow Safest path choice frequency

Links attacked

- Only links attractive to the demon are attacked
- Links with maximum expected loss
- Only links with non-zero link use probability
- Link failure probabilities

 \rightarrow Critical links

PART 2 Application to Olympic routes

Routing & Defence Strategies

Transport game applied to ORN

ARUP

Imperial College

London

Analysis of the ORN network

Single routing

- Without disruption
- With disruption
 - minor k=2
 - major k=1,000,000

Multiple routing

- Without disruption
- With disruption
 - minor k=2
 - major k=1,000,000
- Multiple routing with active defence
 - With disruption
 major k=1,000,000

Imperial College

Iondon

Shortest path

Imperial College London

Single routing + major disruption Imperial College

Results summary 1

Major Disruption						
Total Cost (sec)	Does not Happen	Does Happen				
A Single route	727	120 m				
B Optimal routes	1102	24 m				

Imperial College London

Comments 1

- Significant benefits from multiple routing at a relative low cost
- Multiple routing mitigates the risk of a serious disruption
- Routes with least expected costs are generated
- Number of routes depends on the size of potential losses

Anticipated defence

Imperial College London

Transport games with defence

• Everse inderreted of entremore sympers that:

2/3

Imperial College

London

Imperial College London

	Blackwall Tunnel		Rotherhithe Tunnel		Tower Bridge	
DEFENCE	NO	YES	NO	YES	NO	YES
Link Use	21%	14%	18%	8%	62%	78%
Link Attack	20%	8%	17%	3%	55%	14%
Link Defence	_	0%	_	1%	_	48%

Results summary 2

Imperial College London

Cost	Defence type					
[million sec]	Routing only	Visible	Invisible	Anticipated		
Solution Cost	24	17	10	15		
Benefit	_	7	14	9		
% of the SC	_	30%	58%	37%		

Comments 2

- Defence influences the optimal routing
- Invisible defence yields max benefits
- It is most beneficial to protect river crossings, in particular Tower Bridge.
- Even if only one link is protected, the expected cost can be significantly reduced

Imperial College

Application of the method

Imperial College London

Strategic

- Find critical links
- Estimate costs of various scenarios
- Establish optimal routing and defence strategies

- Operational
- Check what happens if some links are no longer available
- Produce
 contingency
 routes updated
 according to
 road conditions
- Produce individual routing plans for drivers

Navigation

 Real time update using on-line traffic information

Refinements

- Flow dependent link costs
- Joint examination of multiple OD
- Link failure affecting both directions
- Attack and defence of multiple links
- Budget constraints
- Deceptive strategies
- Dynamic effects

Imperial College

Conclusions

 Multiple routing is a rational measure to distribute risk

Potential for application

 Optimal routing & defence strategies bring significant quantifiable benefits

Imperial College London

PART 3 Application to vehicle navigation

Strategic & Operational Planning and Navigation

Introduction

- LPHC implies one demon
- HPLC implies multiple demons
- HPLC:
 - Place a demon at every node
 - Solve by a version of the Spiess and Florian hyperpath algorithm
 - Accelerated by node potentials

Imperial College

I ondon

Assumptions

- ► Every link a∈A has a cost of use c_a under normal operating conditions
- There is an <u>additional cost of use</u> d_a if the link is congested
- ➤ Worst case: On exiting any node i∈ N, one link is degraded
- Seek link use probabilities that minimise expect travel cost subject to worst case link congestion probabilities

Imperial College

Demon games and the minmax exposure principle

- Every node has a demon with the ability to fail one outgoing link
- > Consider a zero sum game, where each demon can select one outgoing link *a* to impose d_a and the dispatcher seeks a least cost route with respect to c_a and expectation of d_a (Schmoecker et al., 2009)
- > Find the mixed strategy Nash equilibrium by:

$$Min_{\mathbf{p}}\left(\sum_{a\in A}c_{a}p_{as}+Max_{\mathbf{q}}\sum_{a\in A}q_{as}d_{a}p_{as}\right)$$

Hypertrees and hyperpaths

> Probability q^*_{as} measures link criticality

Links with probability p^{*}_{as} > 0 define the hypertree to s

$$p_{as}^{*} > 0 \Leftrightarrow q_{as}^{*} > 0$$
 and $p_{as}^{*} = 1 \Leftrightarrow q_{as}^{*} = 1$

> The hyperpath cost is

$$u_{rs} = \sum_{a \in HP(r,s)} c_a p_{as}^* + \sum_{a \in HP(r,s)} q_{as}^* d_a p_{as}^*$$

Imperial College

$$Min_{\mathbf{p},\mathbf{w}} \sum_{s \in S} \left(\sum_{a \in A} c_a p_{as} + \sum_{i \in I} w_{is} \right)$$

subject to

$$\sum_{a \in A_i^+} p_{as} - \sum_{a \in A_i^-} p_{as} = g_{is}, \forall i \in I, s \in S$$
$$w_{is} \ge p_{as} d_a, \forall a \in A_i^-, i \in I, s \in S$$
$$p_{as} \ge 0, \forall a \in A, r \in R, s \in S$$

Imperial College London

Dijkstra's algorithm

- 1. Start at *s* and set $u_j = \infty$ for $j \neq s$ and $u_s = 0$
- 2. Put *s* in OPEN
- 3. Search OPEN for smallest u_i
- 4. For nodes *j* reached from *i* if $u_j > u_i + c_{ij}$ then $u_j = u_i + c_{ij}$
- 5. Put nodes *j* in OPEN and transfer *i* to CLOSED
- 6. Return to Step 3 until *r* in CLOSED

Imperial College

A* algorithm

- 1. Start at s and set $u_j = \infty$ for $j \neq s$ and $u_s = 0$
- 2. Put *s* in OPEN
- 3. Search OPEN for smallest $u_i + h_{i,r}$
- 4. For nodes *j* reached from *i* if $u_j > u_i + c_{ij}$ then $u_j = u_i + c_{ij}$
- 5. Put nodes *j* in OPEN and transfer *i* to CLOSED
- 6. Return to Step 3 until *r* is CLOSED

Imperial College

Spiess and Florian hyperpath algorithm

- *Hyperpath* is a bundle of potentially optimal paths
- Every link has both a cost and a service frequency
- Where there is choice within the hyperpath, allocation is proportional to service frequency (the strategy)
- Elemental path only added to hyperpath if the expected cost of travel is reduced

Hyperpath algorithm

- 1. Start at s and set $u_j = \infty$ for $j \neq$ destination, $u_s = 0$ and $F_i = 0$
- 2. Put *s* in OPEN
- 3. Search OPEN for smallest u_i
- 4. For nodes *j* reached from *i* if $u_j > u_i + c_{ij}$ then $u_j = (F_i u_i + f_{ij} c_{ij}) / (F_i + f_{ij})$, $F_i = F_i + f_{ij}$ and add link (i,j) to HP(r,s)
- 5. Put nodes *j* in OPEN and transfer *i* to CLOSED
- 6. Return to Step 3 until *r* is CLOSED

Imperial College

Reinterpreting the hyperpath algorithm

• Note: 1 / f_{ij} = link headway = max link delay = d_{ij}

- Allocation: Minmax exposure to delay $\Rightarrow p_{ij} d_{ij} = p_{ik} d_{ik}$ if links (i,j) and (i,k) attractive $\Rightarrow p_{ij} \propto 1 / d_{ij} = f_{ij}$
- Attractive: Add link to hyperpath if "expected" travel time thereby reduced. Expected by whom? A risk averse traveller.

Imperial College

Singular hyperpath: No delay

ARIIP

Hyperpath: Med max link delays

Imperial College London

Hyperpath: Large max link delays

ARUP

H* algorithm

- 1. Start at destination and set $u_j = \infty$ for $j \neq s$, $u_s = 0$ and $F_j = 0$
- 2. Put *s* in OPEN
- 3. Search OPEN for smallest $u_i + h_{i,r}$
- 4. For nodes *j* reached from *i* if $u_j > u_i + c_{ij}$ then $u_j = (F_i u_i + f_{ij} c_{ij}) / (F_i + f_{ij}), F_i = F_i + f_{ij}$ and add link (*i*,*j*) to HP(*r*,*s*)
- 5. Put nodes *j* in OPEN and transfer *i* to CLOSED
- 6. Return to Step 3 until *r* is CLOSED

Imperial College

Time-dependent hyperpaths

Requires FIFO

Transportation Research Part A 46 (2012) 790-800

Time-dependent Hyperstar algorithm for robust vehicle navigation

Michael G.H. Bell^{a,*}, Valentina Trozzi^a, Solmaz Haji Hosseinloo^a, Guido Gentile^b, Achille Fonzone^a

^a Centre for Transport Studies, Imperial College London, United Kingdom

^bDipartimento di Idraulica Trasporti e Strade, Sapienza Università di Roma, Italy

Imperial College

Conclusions

Imperial College

london

 Efficient solution algorithms exist for both types of problem

Imperial College London

>> THANK YOU